Perspectives d'utilisation des données : applications NLP et AI
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre le processus d'étalonnage et d'analyse des données pour les mesures ConsO2, y compris la sélection des fichiers d'entrée et l'interprétation des données.
Couvre les fondamentaux de l'apprentissage automatique pour les physiciens et les chimistes, en mettant l'accent sur les tâches de classification d'images à l'aide de l'intelligence artificielle.
Explore la création de tableaux de bord dans ServiceNow, en mettant l'accent sur les avantages, la transition des pages d'accueil et des concepts importants comme les tâches et les incidents.
Examine la façon dont l'IA/ML façonne le futur lieu de travail, en mettant l'accent sur les systèmes et les processus d'entreprise, et discute de l'état actuel de l'adoption de l'IA/ML dans les entreprises.
Explore le dimensionnement des réservoirs et des barrages en utilisant des courbes d'écoulement cumulatives et le dimensionnement des réservoirs pour les périodes sèches et pluvieuses.
Couvre les bases du traitement du langage naturel, y compris la tokenisation, le marquage en partie de la parole et l'intégration, et explore des applications pratiques comme l'analyse du sentiment.
Explore les données sur la consommation d'eau à Genève, y compris les graphiques sur la consommation et les pertes, les ensembles de données disponibles et les phases de traitement des données.
Explore l'évolution de l'analyse des données à l'IA et au ML, en mettant l'accent sur les mégadonnées, l'apprentissage automatique et l'interaction avec les médias sociaux.