Analyse statistique des réseaux : prévision des liens et biclustering
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les techniques de réduction de dimensionnalité telles que PCA et LDA, les méthodes de clustering, l'estimation de la densité et la représentation des données.
Couvre le problème du MSE dans les modèles de régression linéaire, en mettant l'accent sur les méthodes optimales d'estimateur et de fusion des données.
Explore le modèle de bloc stochastique, le regroupement spectral et la compréhension non paramétrique des modèles de bloc, en mettant l'accent sur les mesures pour comparer les modèles graphiques.
Explore les statistiques graphiques, la génération aléatoire de graphiques, l'analyse de réseaux, les mesures de centralité et les coefficients de regroupement.
Examine la distinction entre association et lien de causalité dans l'analyse statistique, en soulignant les limites de l'association dans l'inferration de lien de causalité.
Se penche sur les techniques avancées de prétraitement des données, qui couvrent l'encodage catégorique, le traitement des données manquantes et les ensembles de données déséquilibrés, en mettant l'accent sur les mesures des performances et la comparaison des classificateurs.