Publication de données de préservation de la vie privée
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la génération de données synthétiques pour la publication de données préservant la vie privée, en évaluant son efficacité contre les menaces à la vie privée dans des ensembles de données brutes.
Couvre les mécanismes de protection de la vie privée, leurs avantages et leurs inconvénients, et leur application dans divers scénarios, en mettant l'accent sur la protection de la vie privée en tant que bien de sécurité et son importance dans la société.
Explore les définitions, la valeur et les défis de la vie privée, y compris les données personnelles et les propriétés de la vie privée comme la pseudonymie et l'anonymat k.
Explore l'évaluation environnementale systémique, l'analyse nationale des flux de matériaux et le développement d'un tableau de bord du métabolisme urbain pour Zurich à l'aide de données ouvertes.
Explore l'évolution historique et les aspects juridiques des lois sur la protection des données, des instruments internationaux, des défis du suivi en ligne, des bases juridiques pour le traitement des données à caractère personnel et des règles de confidentialité.
Explore l'importance de l'anonymat pour éviter le jugement fondé sur les caractéristiques personnelles et la nécessité de l'équilibrer avec la responsabilité.