Introduit les bases de la recherche de l'information, couvrant la recherche par texte et booléen, la recherche de l'espace vectoriel et le calcul de la similitude.
Présente les bases de la récupération d'informations, couvrant la représentation de documents, l'expansion des requêtes et TF-IDF pour le classement des documents.
Introduit des modèles Booléen et Vector Space pour la recherche d'informations, couvrant la syntaxe, le calcul de similarité, la fréquence des termes et les poids des requêtes.
Couvre la récupération d'informations probabilistes, la pertinence de la modélisation en tant que probabilité, l'expansion des requêtes et la génération automatique de thésaurus.
Explore le modèle Vector Space, le sac de mots, tf-idf, cosine similarité, Okapi BM25, et la précision et le rappel dans la récupération d'information.
Présente les bases du traitement de données textuelles, couvrant la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets.
Explore la recherche de documents, la classification, l'analyse des sentiments, les matrices TF-IDF, les méthodes de voisinage les plus proches, la factorisation matricielle, la régularisation, LDA, les vecteurs de mots contextualisés et BERT.
Explore l'indexation sémantique latente, la construction de vocabulaire, la création de matrices de documents, la transformation de requêtes et la récupération de documents en utilisant la similarité cosinus.