Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les changements matériels, l'optimisation des requêtes, la répartition de la charge de travail, et des stratégies efficaces pour le milieu universitaire et l'équilibre entre vie professionnelle et vie privée.
Explore les données sur la consommation d'eau à Genève, y compris les graphiques sur la consommation et les pertes, les ensembles de données disponibles et les phases de traitement des données.
Présente une démo sur la virtualisation adaptative des données dans SmartDataLake, mettant l'accent sur l'assemblage de profils d'entreprise et l'exécution de requêtes de joint à travers les ensembles de données.
Couvre les meilleures pratiques et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture, les défis et les technologies comme Hadoop et Hive.
Couvre les cadres de données Spark, les collections distribuées de données organisées en colonnes nommées, et les avantages de les utiliser sur les DDR.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Explore les défis de gestion du stockage dans la transition vers les lacs de données, en abordant l'hétérogénéité des logiciels et du matériel, la conception unifiée du stockage et l'optimisation des performances.
Explore les défis et les solutions pour gérer la dose d'électrons en microscopie, en soulignant l'importance d'un suivi et d'une analyse précis des doses.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.