Couvre le 'V-Model' de l'ingénierie des systèmes, en mettant l'accent sur les bonnes exigences, l'architecture du système, la génération de concepts et la sélection de concepts.
Couvre la récupération d'informations probabilistes, y compris le modèle de vraisemblance des requêtes, la modélisation du langage et les techniques de lissage pour les termes non récurrents.
Explore l'avancement des modèles système de l'intelligence humaine au moyen d'analyses comparatives intégrées et de l'importance de Brain-Score pour des comparaisons équitables de modèles.
Couvre la recherche probabiliste de l'information, les modèles de probabilité d'interrogation, la modélisation du langage et les algorithmes de rétroaction de pertinence.
Explore le concept de Knowledge Graphs et leur rôle dans l'intégration des données et la compréhension sémantique, montrant des exemples et des applications du monde réel.
Explore la représentation des connaissances, l'extraction de l'information et la vision du Web sémantique, en mettant l'accent sur la normalisation, la cartographie et les ontologies dans la structuration des données.
Couvre les modèles probabilistes d'extraction, les mesures d'évaluation, la probabilité de la requête, la rétroaction sur la pertinence de l'utilisateur et l'expansion de la requête.
Explore la gestion circulaire du cycle de vie, la fabrication sans défaut, l'analyse des mégadonnées et la maintenance prédictive dans les processus industriels.