Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'histoire, les modèles, la formation, la convergence et les limites des réseaux neuronaux, y compris l'algorithme de rétropropagation et l'approximation universelle.
Couvre l'importance de la maintenance préventive pour la détection de la détresse de la chaussée et introduit des concepts d'apprentissage automatique pour les ingénieurs.
Explore les réseaux neuronaux à deux couches et la rétropropagation pour l'apprentissage des espaces de fonctionnalités et l'approximation des fonctions continues.
Explique le processus d'apprentissage dans les réseaux neuronaux multicouches, y compris la rétropropagation, les fonctions d'activation, la mise à jour des poids et la rétropropagation des erreurs.
Couvre l'histoire et les concepts fondamentaux des réseaux neuronaux, y compris le modèle mathématique d'un neurone, la descente de gradient et le perceptron multicouche.
Explore la capacité des réseaux de neurones à apprendre des fonctionnalités et à faire des prédictions linéaires, en soulignant l'importance de la quantité de données pour une performance efficace.
Explore le développement historique et la formation de perceptrons multicouches, en mettant l'accent sur l'algorithme de rétropropagation et la conception de fonctionnalités.