Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit un cadre fonctionnel pour les réseaux neuronaux profonds avec des splines adaptatives linéaires à la pièce, mettant l'accent sur la reconstruction de l'image biomédicale et les défis des splines profondes.
Explore les réseaux liquides pour le contrôle d'apprentissage dans les systèmes autonomes, en mettant l'accent sur l'apprentissage de bout en bout et la performance robuste.
Explore les critères de monotonie, la règle de L'Hopital et la continuité de Lipschitz dans les fonctions différentiables et les réseaux neuronaux profonds.
Explore l'intelligence visuelle, la formation d'images, la vision par ordinateur et la compréhension de la représentation dans les machines et les esprits.
Explore comment les architectures modernes ont vaincu la malédiction de la dimensionnalité et l'importance de la stabilité dans les modèles d'apprentissage en profondeur.
Explore l'application de la physique statistique à la compréhension de l'apprentissage profond en mettant l'accent sur les réseaux neuronaux et les défis de l'apprentissage automatique.
Couvre les fondamentaux des réseaux de neurones profonds et des splines, explorant leurs propriétés, leurs implications et leurs applications dans l'apprentissage automatique moderne.