Représentation des données : BoW et données déséquilibrées
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Discute du surajustement, de la sélection des modèles, de la validation croisée, de la régularisation, des représentations de données et de la gestion des données déséquilibrées dans l'apprentissage automatique.
Couvre les méthodes du noyau dans l'apprentissage automatique, en se concentrant sur le surajustement, la sélection du modèle, la validation croisée, la régularisation, les fonctions du noyau et la SVM.
Explore le surajustement, la régularisation et la validation croisée dans l'apprentissage automatique, soulignant l'importance de l'expansion des fonctionnalités et des méthodes du noyau.
Couvre l'expansion des fonctionnalités polynômes, les fonctions du noyau, la régression et le SVM, soulignant l'importance de choisir les fonctions pour l'expansion des fonctionnalités.
Couvre l'expansion des fonctionnalités polynomiales, les méthodes du noyau, les représentations des données, la normalisation et la gestion des données déséquilibrées dans l'apprentissage automatique.