Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Discute des méthodes du noyau, en se concentrant sur les surajustements, la sélection des modèles et les fonctions du noyau dans l'apprentissage automatique.
Explore les mesures de surajustement et de précision dans la classification des images, en soulignant limportance de la généralisation du modèle et de la précision optimale.
Introduit la cartographie topographique du cerveau, les voies auditives, l'organisation du cortex moteur et le modèle linéaire général pour l'analyse des données IRMf.
Explore la propagation des croyances, les clusters gelés et les seuils de colorabilité dans les modèles graphiques, ce qui explique l'importance de la propagation des enquêtes dans la résolution des problèmes de satisfaction liés aux contraintes.
Couvre le classificateur k-NN, la reconnaissance numérique manuscrite, la réduction de données, les applications, la construction de graphes, les limitations et la malédiction de la dimensionnalité.