Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Couvre les concepts fondamentaux de probabilité et de statistique, y compris la loi de probabilité totale, le théorème de Bayes, et l'indépendance des événements.
Introduit des concepts clés en probabilité et en statistique, illustrant leur application à travers divers exemples et soulignant l'importance du langage mathématique dans la compréhension de l'univers.
Couvre les bases de la théorie des probabilités, y compris les définitions, les calculs et les concepts importants pour l'inférence statistique et l'apprentissage automatique.