Régression logistique : fonctions de coût et optimisation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les modèles linéaires, la régression logistique, les métriques de classification, la MVS et leur utilisation pratique dans les méthodes de science des données.
Couvre la modélisation de la dépendance temporelle dans les séries chronologiques, y compris la tendance, les composantes périodiques, la régression, la stationnarité, l'autocorrélation et les essais d'indépendance.
Volkan Cevher se penche sur les mathématiques de l’apprentissage profond, explorant la complexité des modèles, les compromis de risque et le mystère de la généralisation.
Explore l'optimisation convexe dans la réduction de la dimensionnalité non linéaire, en présentant des applications pratiques dans les tâches de traitement du signal et de régression.
Explore les noyaux de signature, les cartes de caractéristiques, les algèbres tensor, et leurs applications dans la science des données et l'apprentissage automatique.