Couvre les principes et les mécanismes de la mémoire virtuelle dans les systèmes informatiques, en se concentrant sur l'isolement, l'efficacité et le rôle de l'unité de gestion de la mémoire.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Couvre les meilleures pratiques et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture, les défis et les technologies comme Hadoop et Hive.
Explore Multi Masters Systems, en discutant des architectures avec plusieurs processeurs, mémoire partagée, exclusion mutuelle et accélérateurs matériels.
Couvre les progrès des systèmes d'analyse de données et le rôle de la co-conception matériel-logiciel dans l'amélioration des performances à l'ère post-Moore.
Discute des techniques avancées d'optimisation Spark pour gérer efficacement les Big Data, en se concentrant sur la parallélisation, les opérations de mélange et la gestion de la mémoire.
Couvre la fragmentation et la segmentation, en se concentrant sur les techniques de gestion de la mémoire et leurs implications pour les performances du système.
Explore les défis de gestion du stockage dans la transition vers les lacs de données, en abordant l'hétérogénéité des logiciels et du matériel, la conception unifiée du stockage et l'optimisation des performances.