Déplacez-vous dans l'intersection de la physique et des données dans les modèles d'apprentissage automatique, couvrant des sujets tels que les champs d'expansion des grappes atomiques et l'apprentissage non supervisé.
Discute de la représentation des données au moyen de modèles et de systèmes, couvrant les modèles mathématiques, les structures de données, les niveaux de modélisation et la gestion des données.
Explore l'apprentissage automatique atomistique, intégrant les principes physiques dans les modèles pour prédire avec précision les propriétés moléculaires.