Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le développement historique de l'apprentissage profond, de l'apprentissage par renforcement, des mécanismes d'attention et des systèmes de mémoire en IA inspirés des neurosciences.
Explore l'apprentissage automatique dans les simulations de dynamique moléculaire, s'attaquant à la malédiction de la dimensionnalité, de la représentation du réseau neuronal et de l'estimation des champs de force.
Explore le rôle de l'unité Alice de l'EPFL dans l'apprentissage automatique et l'IA en Europe, en mettant l'accent sur les progrès de la recherche et la collaboration au sein de la communauté de l'IA.
Explore l'évolution des techniques de reconstruction de l'image médicale, des méthodes classiques aux approches fondées sur les données à l'aide de réseaux neuronaux profonds.
Introduit Q-Learning, Deep Q-Learning, l'algorithme REINFORCE et Monte-Carlo Tree Search dans l'apprentissage par renforcement, aboutissant à AlphaGo Zero.
Couvre l'entraînement des réseaux neuronaux en utilisant la descente de gradient stochastique, les règles de la chaîne, le calcul des gradients, la décroissance du poids et le décrochage.
Compare les réseaux profonds avec les réseaux peu profonds dans les réseaux de neurones artificiels et l'apprentissage profond, en explorant les raisons de leurs différences de performance.
Explore un article de 2019 sur la reconnaissance d'images, les défis liés aux ensembles de données, les biais et l'impact des ensembles de données à grande échelle sur les modèles d'apprentissage en profondeur.