Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les mathématiques de l'apprentissage profond, les réseaux neuronaux et leurs applications dans les tâches de vision par ordinateur, en abordant les défis et le besoin de robustesse.
S'insère dans l'apprentissage continu des modèles de représentation dans l'intelligence cérébrale, mettant l'accent sur l'adaptation rapide aux environnements non structurés.
Explore la relation complexe entre les neurosciences et l'apprentissage automatique, en soulignant les défis de l'analyse des données neuronales et le rôle des outils d'apprentissage automatique.
Explore les techniques de réduction de la variance dans l'apprentissage profond, couvrant la descente en gradient, la descente en gradient stochastique, la méthode SVRG, et la comparaison des performances des algorithmes.
Explore l'ensachage en tant que méthode de régularisation dans l'apprentissage en profondeur, en formant plusieurs variantes de modèles sur différents sous-ensembles de données pour améliorer la généralisation.
Explore l'optimisation non convexe dans l'apprentissage profond, couvrant les points critiques, la convergence SGD, les points de selle et les méthodes de gradient adaptatif.