Apprentissage non supervisé: théorème de Young-Eckart-Mirsky et introduction à PCA
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les bases de l'apprentissage automatique pour les ingénieurs, y compris l'étalonnage, les exigences de cours, des exemples pratiques, des concepts d'IA et des applications ML.
Explore les méthodes de discrétisation, y compris les techniques d'égale largeur et d'égale fréquence, ainsi que les statistiques x2 pour les tests d'indépendance.
Explore l'analyse des composants principaux pour la réduction de la dimensionnalité dans l'apprentissage automatique, en présentant ses capacités d'extraction de fonctionnalités et de prétraitement de données.
Se penche sur les progrès du sous-typage biologique en psychiatrie, en mettant l'accent sur le trouble dépressif majeur et le trouble du spectre autistique.
Couvre l'évaluation des méthodes de regroupement, y compris le regroupement des moyennes K et l'utilisation de mesures d'évaluation pour déterminer le nombre optimal de regroupements.
Explique les étapes d'affectation et de mise à jour dans le clustering K-means, la minimisation des fonctions de perte et les effets métriques de distance.