Réseaux neuronaux récurrents : Détection de la langue
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les marchés financiers, les séries chronologiques, les applications d'apprentissage automatique en finance et le traitement des langues naturelles.
Explore les réseaux liquides pour le contrôle d'apprentissage dans les systèmes autonomes, en mettant l'accent sur l'apprentissage de bout en bout et la performance robuste.
Explore les modèles prédictifs et les traceurs pour les véhicules autonomes, couvrant la détection d'objets, les défis de suivi, le suivi en réseau neuronal et la localisation des piétons en 3D.
Plongez dans le deep learning pour la classification des images et des objets dans les systèmes IoT, y compris les techniques de clustering et les problèmes de confidentialité.
Introduit un cadre fonctionnel pour les réseaux neuronaux profonds avec des splines adaptatives linéaires à la pièce, mettant l'accent sur la reconstruction de l'image biomédicale et les défis des splines profondes.
Explore les réseaux profonds et convolutifs, couvrant la généralisation, l'optimisation et les applications pratiques dans l'apprentissage automatique.
Explore la surparamétrie, la généralisation, le surajustement, le sous-ajustement et la régularisation implicite dans les modèles d'apprentissage profond.