Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la combinaison de la force et de la vision pour des tâches de manipulation efficaces en utilisant une représentation dimensionnelle inférieure.
Explore l'analyse des mesures de température quotidiennes à l'aide de techniques de traitement du signal, présentant le calcul des moyennes mobiles et révélant les tendances à long terme.
Explore les classificateurs gaussiens, la classification des textures, l'estimation des paramètres, l'apprentissage supervisé et les réseaux neuronaux profonds dans le traitement d'images.
Discute des défis dans les systèmes d'IA, des limitations d'apprentissage supervisé, et de la nécessité de méthodes fondées sur les données pour renforcer l'apprentissage.
Explore les arbres de décision, les ensembles, le CLT, l'inférence, l'apprentissage automatique, les méthodes de diagnostic, l'augmentation et l'estimation de la variance.
Explore les systèmes intelligents portables pour la surveillance de l'ECG afin d'améliorer les soins de santé préventifs grâce à une détection précoce et à un traitement personnalisé.
Explore les approches d'extraction d'informations telles que les modèles écrits à la main et la supervision à distance, avec des exemples de paires d'entités correspondant à des modèles.
Introduit des réseaux neuronaux convolutionnels pour le traitement de l'image, couvrant les composants de base, les architectures et les applications pratiques, y compris la dénouement et la segmentation.