Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'application de l'apprentissage automatique dans la dynamique moléculaire et les matériaux, en mettant l'accent sur la création de caractéristiques significatives et l'importance de la généralisabilité.
Explore les noyaux pour simplifier la représentation des données et la rendre linéairement séparable dans les espaces de fonctionnalités, y compris les fonctions populaires et les exercices pratiques.
Explore les avantages prouvables d'une surparamétrie dans la compression des modèles, en mettant l'accent sur l'efficacité des réseaux neuronaux profonds et sur l'importance du recyclage pour améliorer les performances.
Couvre les problèmes de surajustement, de sélection de modèle, de validation, de validation croisée, de régularisation, de régression du noyau et de représentation des données.
Explore les modèles linéaires, la régression logistique, les métriques de classification, la MVS et leur utilisation pratique dans les méthodes de science des données.
Explore les noyaux de régression de processus gaussien, les coûts de calcul et les comparaisons avec la régression de crête et d'autres techniques de régression non linéaire.