Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Couvre les fondamentaux des écosystèmes de big data, en se concentrant sur les technologies, les défis et les exercices pratiques avec le HDFS d'Hadoop.
Couvre les pratiques exemplaires et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture typique, les défis et les technologies utilisés pour y remédier.
Explore l'optimisation des requêtes récursives dans les systèmes de bases de données à l'aide de Datalog et semi-rings, en discutant des défis et des solutions dans l'analyse des données.
Couvre les meilleures pratiques et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture, les défis et les technologies comme Hadoop et Hive.
Couvre les techniques de manipulation des données à l'aide de Hadoop, en se concentrant sur les bases de données axées sur les lignes et les colonnes, les formats de stockage populaires et l'intégration HBase-Hive.
Explore la localisation des données dans la planification des décisions pour les plates-formes multi-locataires et discute de l'architecture d'Hadoop, des optimisations du moteur d'exécution et des stratégies de tolérance aux pannes.