Couvre les méthodes numériques pour résoudre les problèmes de valeurs limites en utilisant des méthodes de différence finie, de FFT et d'éléments finis.
Explore la formulation faible et la méthode Galerkin dans les applications de la méthode des éléments finis, y compris les conditions limites et les systèmes linéaires d'équations.
Explore l'approche locale de la méthode des éléments finis, couvrant les fonctions de forme nodale, les restrictions de solution, les tailles, les conditions aux limites et les opérations d'assemblage.
Couvre les effets de transfert de chaleur internes dans des réactions hétérogènes, en mettant l'accent sur les nombres sans dimension et les effets de transport.
Explore les méthodes numériques en biomécanique pour les implants de hanche et met l'accent sur les conditions de compréhension pour améliorer les conceptions et les résultats des patients.
Couvre les solutions de diffusion neutronique, y compris les solutions analytiques, le laplacien dans différentes géométries et la signification physique de la zone de diffusion.