Explore les techniques de regroupement de comportement et de réduction de dimensionnalité non supervisées, couvrant des algorithmes comme K-Means, DBSCAN et Gaussian Mixture Model.
Comparer les algorithmes K-Means et Spectral Clustering, en mettant en évidence leurs différences et leurs applications pratiques dans le regroupement des comportements des élèves.
Couvre la classification des images, le clustering et les techniques d'apprentissage automatique telles que la réduction de la dimensionnalité et l'apprentissage par renforcement.
Couvre l'apprentissage non supervisé, en mettant l'accent sur la réduction de la dimensionnalité et le regroupement, en expliquant comment il aide à trouver des modèles dans les données sans étiquettes.
Introduit des algorithmes de traçage des connaissances bayésiennes, de modélisation des facteurs additifs et de regroupement pour tracer les connaissances des étudiants et découvrir les structures.