Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Déplacez-vous dans la recherche graphique, les réseaux neuronaux et l'apprentissage profond, couvrant des sujets tels que les réseaux neuronaux convolutionnels et les réseaux neuronaux artificiels.
Couvre les bases du traitement du langage naturel, y compris la tokenisation, le marquage en partie de la parole et l'intégration, et explore des applications pratiques comme l'analyse du sentiment.
Couvre les bases du traitement du langage naturel, des approches traditionnelles aux approches modernes, soulignant les défis et l'importance d'étudier les deux méthodes.
Explore les réseaux neuronaux convolutifs pour la segmentation sémantique, discutant des modèles de classification des pixels, du décodage appris et de l'importance des connexions par saut.
Couvre la navigation bio-inspirée, les réseaux graphes convolutionnels, et des architectures robustes de transformateur de vision pour l'intelligence visuelle.
Explore le modèle Transformer, des modèles récurrents à la PNL basée sur l'attention, en mettant en évidence ses composants clés et ses résultats significatifs dans la traduction automatique et la génération de documents.
Explore le concept de biais inductif dans l'apprentissage automatique, en mettant l'accent sur le rôle des connaissances antérieures dans la conception de réseaux neuronaux efficaces.