Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.
Explore les limites physiques et les aspects de sécurité des systèmes de cryptage symétriques, y compris la consommation d'énergie, la récupération des clés et la sécurité des distinctions.
Introduit la probabilité, les statistiques, les distributions, l'inférence, la probabilité et la combinatoire pour étudier les événements aléatoires et la modélisation en réseau.
Explorer l'analyse de la pollution atmosphérique à l'aide de données sur le vent, de distributions de probabilités et de modèles de trajectoire pour l'évaluation de la qualité de l'air.
Explore l'hypothèse de thermalisation d'état propre dans les systèmes quantiques, en mettant l'accent sur la théorie de la matrice aléatoire et le comportement des observables dans l'équilibre thermique.
Explore les probabilités avancées, les variables aléatoires et les valeurs attendues, avec des exemples pratiques et des quiz pour renforcer l'apprentissage.