Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité et ses implications pour une résolution efficace des problèmes.
Couvre le concept de descente de gradient dans les cas scalaires, en se concentrant sur la recherche du minimum d'une fonction en se déplaçant itérativement dans la direction du gradient négatif.
Explore les réseaux profonds et convolutifs, couvrant la généralisation, l'optimisation et les applications pratiques dans l'apprentissage automatique.
Explore les biais implicites, la descente de gradient, la stabilité dans les algorithmes d'optimisation et les limites de généralisation dans l'apprentissage automatique.
Couvre l'optimisation non convexe, les problèmes d'apprentissage profond, la descente stochastique des gradients, les méthodes d'adaptation et les architectures réseau neuronales.