Apprentissage supervisé : classification et régression
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les bases de l'apprentissage automatique, en mettant l'accent sur l'utilisation de Piazza pour les communications liées à la classe et les exercices pratiques en Python.
Explore les noyaux de signature, les cartes de caractéristiques, les algèbres tensor, et leurs applications dans la science des données et l'apprentissage automatique.
Couvre les méthodes du noyau dans l'apprentissage machine avancé, se concentrant sur les noyaux, l'apprentissage non supervisé, et les algorithmes de classification.
Explore les applications de la chimie quantique, en mettant l'accent sur le rôle de la densité électronique dans la prédiction des propriétés chimiques et en abordant les défis de la conception des catalyseurs, de la conversion de l'énergie solaire et de la synthèse des médicaments.
Explore les effets isotopiques cinétiques et les relations linéaires d'énergie libre, en introduisant des méthodes d'apprentissage automatique pour les applications chimiques.
Explore les lois de contrôle d'apprentissage avec Dynamical Systems pour robots, en mettant l'accent sur les problèmes de régression et les techniques d'ajustement.
Couvre la régression MAE, la coque convexe, les avantages de la reformulation et les problèmes pratiques liés aux variables et aux contraintes de décision.