Comprendre l'apprentissage automatique : des modèles parfaitement solubles
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le paradigme de l'apprentissage profond, y compris les défis, les réseaux neuronaux, la robustesse, l'équité, l'interprétabilité et l'efficacité énergétique.
Couvre une introduction mathématique à l'apprentissage profond, y compris les défis, la puissance des classificateurs linéaires, l'échelle du modèle et les aspects théoriques.
Explore les réseaux liquides pour le contrôle d'apprentissage dans les systèmes autonomes, en mettant l'accent sur l'apprentissage de bout en bout et la performance robuste.
Couvre les bases de l'apprentissage de renforcement, y compris l'apprentissage d'essai et d'erreur, l'apprentissage Q, le RL profond, et les applications dans le jeu et la planification.
Couvre un cours intensif sur l'apprentissage profond, y compris le Mark I Perceptron, les réseaux neuronaux, les algorithmes d'optimisation et les aspects de formation pratique.
Couvre les outils de physique statistique pour l'optimisation, l'apprentissage, la coloration graphique, les systèmes de recommandation et les réseaux neuronaux.
Couvre l'optimisation non convexe, les problèmes d'apprentissage profond, la descente stochastique des gradients, les méthodes d'adaptation et les architectures réseau neuronales.
Explore l'apprentissage profond pour la PNL, en couvrant les insertions de mots, les représentations contextuelles, les techniques d'apprentissage et les défis tels que les gradients de disparition et les considérations éthiques.
Introduit des perceptrons multicouches (MLP) et couvre la régression logistique, la reformulation, la descente de gradient, AdaBoost et les applications pratiques.