Statistiques non paramétriques: approche bayésienne
Séances de cours associées (148)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'hétéroskédasticité en économétrie, en discutant de son impact sur les erreurs standard, les estimateurs alternatifs, les méthodes d'essai et les implications pour les tests d'hypothèses.
Explore l'analyse des données bivariées dans les biostatistiques appliquées, couvrant la corrélation, la régression, la sélection des modèles et le diagnostic.
Couvre la pénalisation dans la régression des crêtes, en mettant l'accent sur le compromis entre le biais et la variance dans les modèles de régression.
Explore l'application de l'algèbre linéaire dans la science des données, couvrant la réduction de la variance, la théorie de la distribution des modèles et les estimations du maximum de vraisemblance.
Introduit une analyse de régression pour la modélisation de données multivariées, couvrant l'algèbre matricielle, l'interprétation des coefficients et les intervalles d'essai.
Couvre les bases de régression linéaire, en se concentrant sur la minimisation des erreurs en utilisant le principe des moindres carrés et comprend une table ANOVA et un exemple pratique dans R.
Couvre les techniques d'estimation spectrale comme la réduction et l'estimation paramétrique, en soulignant l'importance des modèles AR et la probabilité de Whittle dans l'analyse des séries chronologiques.