Modèles du sujet: Comprendre les structures latentes
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les autoencodeurs variationnels, une approche probabiliste des autoencodeurs pour la génération de données et la représentation de fonctionnalités, avec des applications dans le traitement du langage naturel.
Explore les intégrations de mots, les modèles de sujet, Word2vec, les réseaux bayésiens et les méthodes d'inférence telles que l'échantillonnage Gibbs.
Introduit le traitement du langage naturel, qui couvre le prétraitement du texte, l'analyse des sentiments et l'analyse des sujets, en mettant l'accent sur l'établissement d'un indice de risque pour le changement climatique.