Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les marginaux articulaires et la causalité de Granger dans la théorie des probabilités, en expliquant leurs implications dans la prédiction des résultats.
Plonge dans les chaînes de Markov en analysant un scénario avec deux puces se déplaçant dans des directions opposées, explorant les matrices de transition et les probabilités au fil du temps.
Introduit des modèles de Markov cachés, expliquant les problèmes de base et les algorithmes comme Forward-Backward, Viterbi et Baum-Welch, en mettant laccent sur lattente-Maximisation.
Explore la réversibilité dans les chaînes de Markov et son impact sur la distribution stationnaire, en soulignant la complexité des chaînes non réversibles.