Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'application de l'apprentissage automatique en médecine, en mettant l'accent sur l'interprétabilité, la variabilité entre les patients et la recherche d'équations transparentes dans les modèles médicaux.
Explore l'apprentissage automatique pour les systèmes quantiques de nombreux corps, y compris les méthodes variables Monte Carlo et les réseaux neuronaux.
Explore les algorithmes d'apprentissage automatique, les techniques de sélection des fonctionnalités telles que les descripteurs FAST et BRIEF, et les limites de l'apprentissage profond.
Compare les réseaux profonds avec les réseaux peu profonds dans les réseaux de neurones artificiels et l'apprentissage profond, en explorant les raisons de leurs différences de performance.
Explore le décodage à partir de modèles neuronaux dans le NLP moderne, couvrant les modèles encodeurs-décodeurs, les algorithmes de décodage, les problèmes avec le décodage argmax, et l'impact de la taille du faisceau.
Explore les propriétés théoriques et la puissance pratique des réseaux neuronaux récurrents, y compris leur relation avec les machines d'état et l'exhaustivité de Turing.
Par Amir Zamir explore la contingence sensorimotrice, l’intelligence sans représentation, l’apprentissage des programmes et les stratégies d’apprentissage automatique.