Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la caractéristique universelle de la formation de prix intrajournalière en utilisant des techniques d'apprentissage en profondeur pour prévoir les changements de prix en fonction de l'historique des flux d'ordres.
Explore les méthodes stochastiques pour les systèmes quantiques, y compris la diagonalisation exacte, les méthodes variationnelles, les réseaux neuronaux et l'apprentissage automatique.
Explore les mathématiques de l'apprentissage profond, les réseaux neuronaux et leurs applications dans les tâches de vision par ordinateur, en abordant les défis et le besoin de robustesse.
Explore la recherche approfondie des connaissances et son application pour prédire les résultats d'apprentissage des élèves à l'aide de réseaux neuronaux et de fonctions de perte.
Explore la synergie entre l'apprentissage automatique et les neurosciences, en montrant comment les réseaux neuronaux profonds peuvent prédire les réponses neuronales et les défis rencontrés par l'IA en robotique.
Explore l'évolution de la représentation de l'image, les défis dans l'apprentissage supervisé, les avantages de l'apprentissage auto-supervisé, et les progrès récents dans SSL.
Explore la compression du modèle de deuxième ordre pour les réseaux neuronaux profonds massifs, montrant les techniques de compression et leur impact sur la précision du modèle.
Explore Transformers dans la vision informatique, se concentrant sur l'architecture 'Attention est tout ce dont vous avez besoin' et ses applications dans les tâches visuelles.
Explore la dynamique quantique de plusieurs corps à l'aide de réseaux neuronaux artificiels, en mettant l'accent sur les simulations expérimentales et les défis théoriques.