Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la méthode ANOVA, en se concentrant sur la partition de la somme totale des carrés en composantes de traitement et d'erreur, les calculs carrés moyens, les statistiques de Fisher et la distribution F.
Explique le test t à deux échantillons pour comparer les moyennes d'échantillons indépendants, y compris les étapes de test d'hypothèse et le calcul statistique de test.
Discute de la distribution de Dirichlet, de l'inférence bayésienne, de la moyenne postérieure et de la variance, des antécédents conjugués et de la distribution prédictive dans le modèle de Dirichlet-Multinôme.
Explore la covariance, la dépendance statistique, la relation éducation-fertilité, les tests d'hypothèse et les statistiques de comparaison pour des résultats continus.
Introduit les types de variables, la distribution multinomiale, les caractéristiques des données, les formes des densités, la corrélation et les méthodes de visualisation des données.
Couvre les critères d'estimation des paramètres, en soulignant l'importance de la cohérence, du biais, de la variance et de l'efficacité des estimateurs.