Explore les astuces du noyau dans les machines vectorielles de support pour un calcul efficace dans les espaces de grande dimension sans transformation explicite.
Explore l'apprentissage de la fonction du noyau en optimisation convexe, en se concentrant sur la prédiction des sorties à l'aide d'un classificateur linéaire et en sélectionnant les fonctions optimales du noyau par validation croisée.
Introduit des concepts fondamentaux d'apprentissage automatique, couvrant la régression, la classification, la réduction de dimensionnalité et des modèles générateurs profonds.
Explore des sujets avancés dans l'apprentissage automatique, en se concentrant sur les extensions SVR et l'optimisation hyperparamétrique, y compris Nu-SVR et RVR.