Ensachage : méthode de régularisation en apprentissage profond
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'apprentissage en apprentissage profond pour les véhicules autonomes, couvrant les modèles prédictifs, RNN, ImageNet, et l'apprentissage de transfert.
Explore le concept de biais inductif dans l'apprentissage automatique, en mettant l'accent sur le rôle des connaissances antérieures dans la conception de réseaux neuronaux efficaces.
Explore le développement historique de l'apprentissage profond, de l'apprentissage par renforcement, des mécanismes d'attention et des systèmes de mémoire en IA inspirés des neurosciences.
Explore l'amélioration des prédictions d'apprentissage automatique en raffinant les mesures d'erreur et en appliquant des contraintes pour améliorer la précision des prédictions de densité électronique.
Explore la modélisation d'espaces d'entrée continus dans l'apprentissage par renforcement à l'aide de réseaux de neurones et de fonctions de base radiales.
Explore les applications d'apprentissage automatique dans l'analyse du système terrestre à l'aide de données de télédétection, en mettant l'accent sur l'interprétation automatique de l'image et l'IA explicable.
Introduit FIGLearn, une méthode d'apprentissage des filtres et des graphiques utilisant un transport optimal, surperformant l'état actuel de la technique.