Régression logistique : prédiction de la végétation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des méthodes de noyau telles que SVM et régression, couvrant des concepts tels que la marge, la machine vectorielle de support, la malédiction de la dimensionnalité et la régression de processus gaussien.
Explore l'apprentissage supervisé en économétrie financière, couvrant la régression linéaire, l'ajustement du modèle, les problèmes potentiels, les fonctions de base, la sélection de sous-ensembles, la validation croisée, la régularisation et les forêts aléatoires.
Explique le regroupement des moyennes k, en attribuant des points de données à des grappes en fonction de la proximité et en minimisant les distances carrées à l'intérieur des grappes.
Introduit la méthode k-Nearest Neighbors et l'expansion des fonctionnalités pour l'apprentissage non linéaire de la machine par des transformations polynômes.
Introduit la régression linéaire, l'ajustement de la ligne de couverture, l'entraînement, les gradients et les fonctions multivariées, avec des exemples pratiques tels que l'achèvement du visage et la prédiction de l'âge.
Couvre les bases de la régression linéaire, des variables instrumentales, de l'hétéroscédasticité, de l'autocorrélation et de l'estimation du maximum de vraisemblance.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.