Couvre les principes et les stratégies de l'ingénierie de la protection de la vie privée, en soulignant l'importance d'intégrer la protection de la vie privée dans les systèmes de TI et les défis à relever pour atteindre la protection de la vie privée par la conception.
Explore les principes de confidentialité par conception, la minimisation des données, la minimisation de la confiance et l'étude de cas de l'application SwissCovid.
Introduit le Mécanisme de graduation K-Norm (KNG) pour obtenir une protection de la vie privée différentielle avec des exemples pratiques et des idées sur ses avantages par rapport aux mécanismes existants.
Explore l'apprentissage automatique fédéré et la confidentialité différentielle dans l'apprentissage automatique, en discutant des attaques, des défenses et des défis.
Couvre les autorisations anonymes, les preuves de zéro connaissance, les lettres de créance fondées sur les attributs et les problèmes pratiques en matière d'authentification anonyme.
Explore le compromis entre la sécurité et la vie privée, en mettant l'accent sur la vie privée en tant que propriété de sécurité cruciale et en discutant des technologies améliorant la vie privée.
Examine les risques et les techniques liés à la désanonymisation des données, y compris les lacunes dans les méthodes et les exemples réels de tentatives infructueuses.
Explore la protection de la vie privée en ligne, les menaces à l'anonymat, les répercussions sur les métadonnées et les approches pour atteindre la protection de la vie privée.