Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Discute des défis liés à la construction de réseaux neuraux physiques, en mettant l'accent sur la profondeur, les connexions et la capacité de formation.
Discute des réseaux neuronaux convolutifs, de leur architecture, des techniques de formation et des défis tels que des exemples contradictoires en apprentissage profond.
Présente les réseaux neuronaux convolutifs, en expliquant leur architecture, leur processus de formation et leurs applications dans les tâches de segmentation sémantique.
Couvre les concepts clés de l'apprentissage par renforcement, des réseaux neuronaux, du clustering et de l'apprentissage non supervisé, en mettant l'accent sur leurs applications et leurs défis.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.