Apprentissage profond pour les véhicules autonomes: Apprentissage
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les marchés financiers, les séries chronologiques, les applications d'apprentissage automatique en finance et le traitement des langues naturelles.
Explore la capacité des réseaux de neurones à apprendre des fonctionnalités et à faire des prédictions linéaires, en soulignant l'importance de la quantité de données pour une performance efficace.
Explore les représentations neuro-symboliques pour comprendre les connaissances et le raisonnement communs, en mettant l'accent sur les défis et les limites de l'apprentissage profond dans le traitement du langage naturel.
Analyse la descente du gradient sur les réseaux neuraux ReLU à deux couches, en explorant la convergence globale, la régularisation, les biais implicites et l'efficacité statistique.
S'oriente vers l'approximation du réseau neuronal, l'apprentissage supervisé, les défis de l'apprentissage à haute dimension et la révolution expérimentale de l'apprentissage profond.
Couvre une analyse SWOT de l'apprentissage automatique et de l'intelligence artificielle, explorant les forces, les faiblesses, les possibilités et les menaces sur le terrain.
Déplacez-vous dans des représentations neuro-symboliques pour la connaissance du sens commun et le raisonnement dans les applications de traitement du langage naturel.