Explore les fondamentaux de la régression linéaire, la formation des modèles, l'évaluation et les mesures du rendement, en soulignant l'importance de la R2, du MSE et de l'EAM.
Couvre la théorie des méthodes numériques pour l'estimation des fréquences sur les signaux déterministes, y compris la série et la transformation de Fourier, la transformation de Fourier discret et le théorème d'échantillonnage.
Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.
Introduit des algorithmes ML non linéaires, couvrant le voisin le plus proche, k-NN, ajustement des courbes polynômes, complexité du modèle, surajustement, et régularisation.
Explore les signaux, les instruments et les systèmes, couvrant ADC, Fourier Transform, échantillonnage, reconstruction des signaux, alias et filtres anti-alias.