Couvre les modèles générateurs en mettant l'accent sur l'auto-attention et les transformateurs, en discutant des méthodes d'échantillonnage et des moyens empiriques.
Couvre les inégalités de concentration et les méthodes d'échantillonnage pour estimer les distributions inconnues, en mettant l'accent sur les taux d'infection de la population.
Explore la génération de langage naturel, en mettant l'accent sur les systèmes de construction qui produisent un texte cohérent pour la consommation humaine à l'aide de diverses méthodes de décodage et de mesures d'évaluation.
Explore les probabilités avancées, les variables aléatoires et les valeurs attendues, avec des exemples pratiques et des quiz pour renforcer l'apprentissage.
Introduit des statistiques inférentielles, couvrant l'échantillonnage, la tendance centrale, la dispersion, les histogrammes, les scores z et la distribution normale.
Explore les modèles de diffusion dans la modélisation générative, couvrant lestimation de probabilité, la génération de données et lévaluation des modèles.