Apprentissage par renforcement: problèmes de bandits
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les bases de l'apprentissage de renforcement, y compris l'apprentissage d'essai et d'erreur, l'apprentissage Q, le RL profond, et les applications dans le jeu et la planification.
Explore des modèles générateurs pour la prévision de trajectoires dans les véhicules autonomes, y compris des modèles discriminatifs vs générateurs, VAES, GANS, et des études de cas.
Couvre les défis de classification d'images, les concepts d'apprentissage automatique, la régression linéaire et l'approche voisine la plus proche dans les véhicules autonomes.
Explore le rôle de l'unité Alice de l'EPFL dans l'apprentissage automatique et l'IA en Europe, en mettant l'accent sur les progrès de la recherche et la collaboration au sein de la communauté de l'IA.
Explore les agents d'apprentissage profond dans l'apprentissage du renforcement, en mettant l'accent sur les approximations du réseau neuronal et les défis dans la formation des systèmes multiactifs.
Explore l'apprentissage profond pour les véhicules autonomes, couvrant la perception, l'action et les prévisions sociales dans le contexte des technologies de capteurs et des considérations éthiques.
Couvre la modélisation de la menace dans l'apprentissage profond pour les véhicules autonomes, en mettant l'accent sur la défense contre les exemples contradictoires et les portes arrière.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.