Réseaux neuronaux profonds : optimisation et approximation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Présente les réseaux neuronaux convolutifs, en expliquant leur architecture, leur processus de formation et leurs applications dans les tâches de segmentation sémantique.
Explore les réseaux neuronaux à deux couches et la rétropropagation pour l'apprentissage des espaces de fonctionnalités et l'approximation des fonctions continues.
Explore l'évolution des CNN dans le traitement de l'image, couvrant les réseaux neuronaux classiques et profonds, les algorithmes d'entraînement, la rétropropagation, les étapes non linéaires, les fonctions de perte et les frameworks logiciels.
Explore les réseaux neuronaux convolutifs pour la classification des images, en se concentrant sur les défis de poids, les stratégies de prévention de surajustement et les modèles pré-entraînés.
Explore la connexion entre les réseaux neuronaux et la théorie quantique du champ, en se concentrant sur la correspondance entre les espaces de paramètres et de fonctions.
Explore le codage de réseau analogique pour l'imagerie sans fil dans des conditions difficiles, mettant en valeur son potentiel dans la reconstruction de pose humaine et les voitures autonomes.