Introduit le traitement du langage naturel (NLP) et ses applications, couvrant la tokenisation, l'apprentissage automatique, l'analyse du sentiment et les applications NLP suisses.
Couvre les concepts fondamentaux de l'apprentissage profond et de l'architecture Transformer, en se concentrant sur les réseaux neuronaux, les mécanismes d'attention et leurs applications dans les tâches de modélisation de séquence.
Introduit le cours sur le traitement du langage naturel moderne, couvrant son importance, ses applications, ses défis et les progrès de la technologie.
Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Introduit les réseaux de mémoire à long terme (LSTM) comme une solution pour la disparition et l'explosion des gradients dans les réseaux neuronaux récurrents.
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.