Explore les principes de la fusion inertielle et magnétique, en discutant de l'équilibre énergétique, des défis et des progrès vers la combustion du plasma.
Introduction de la physique des plasmas et de l'énergie de fusion, couvrant la consommation d'énergie, les réactions de fusion, les avantages de l'énergie de fusion, le confinement des plasmas, les défis de la physique des tokamaks et le projet ITER.
Explore la complexité du plasma limite dans la recherche sur l'énergie de fusion, en mettant l'accent sur les techniques expérimentales et les simulations pour comprendre la dynamique du plasma et améliorer la conception du réacteur de fusion.
Explore l'ionisation d'impact dans la physique des plasmas et le modèle de marche aléatoire comme un défi clé dans la compréhension du confinement des plasmas.
Explore la physique au bord des dispositifs de fusion, en mettant l'accent sur le confinement du plasma et l'optimisation du fonctionnement du réacteur de fusion.
Explore les stellarators comme des alternatives aux tokamaks, en discutant des configurations magnétiques 3D, des avantages et des inconvénients, de l'histoire et d'autres concepts de confinement.
Discute du confinement plasmatique à l'aide de miroirs magnétiques et de champs toroïdaux, mettant l'accent sur la dynamique des particules et les défis du confinement toroïdal.