Fonction linéaire (analyse)Dans les mathématiques élémentaires, les fonctions linéaires sont parmi les fonctions les plus simples que l'on rencontre. Ce sont des cas particuliers d'applications linéaires. Elles traduisent la proportionnalité. Par exemple, on dira que le prix d'un plein d'essence est fonction linéaire du nombre de litres mis dans le réservoir car : pour zéro litre, on paie zéro euro ; pour un litre, on paie 1,40 euro ; pour 2 litres on paie 2,80 euros ; pour 10 litres on paie 14 euros ; pour 100 litres on paie 140 euros ; et pour N litres, on paie 1,4 × N euros.
Colonne (architecture)vignette|250px|Colonnes monumentales datant de l'Antiquité romaine du temple de Bel à Palmyre, Syrie. vignette|200px|Colonnes engagées et baguées à bossages vermiculés. La colonne est, en architecture, ameublement, sculpture et ingénierie des structures, un support vertical dont le plan est un cercle (colonne cylindrique) ou un polygone régulier à plus de quatre côtés (colonne polygonale). Elle se distingue du pilier et du pilastre. Elle est composée en principe d'une base, d'un fût et d'un chapiteau.
Théorème du rangEn mathématiques, et plus précisément en algèbre linéaire, le théorème du rang lie le rang d'une application linéaire et la dimension de son noyau. C'est un corollaire d'un théorème d'isomorphisme. Il peut être interprété par la notion d'indice d'application linéaire. En dimension finie, il permet notamment de caractériser l'inversibilité d'une application linéaire ou d'une matrice par son rang. vignette|Le théorème du rang.
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Matrice jacobienneEn analyse vectorielle, la matrice jacobienne est la matrice des dérivées partielles du premier ordre d'une fonction vectorielle en un point donné. Son nom vient du mathématicien Charles Jacobi. Le déterminant de cette matrice, appelé jacobien, joue un rôle important pour l'intégration par changement de variable et dans la résolution de problèmes non linéaires. Soit F une fonction d'un ouvert de R à valeurs dans R. Une telle fonction est définie par ses m fonctions composantes à valeurs réelles : .
Basic (langage)Basic ou basic (de l'acronyme anglais BASIC pour Beginner's All-purpose Symbolic Instruction Code est littéralement « code d'instruction symbolique multiusage du débutant »), fait partie d'une famille de langages de programmation de haut niveau ayant pour caractéristique leur facilité d'utilisation. La première version est présentée par John George Kemeny et Thomas Eugene Kurtz au Dartmouth College en 1964. À l’époque, la quasi-totalité des ordinateurs exigeait l’écriture de logiciels personnalisés, que seuls les scientifiques et les mathématiciens avaient tendance à apprendre.
Groupe finivignette|Un exemple de groupe fini est le groupe des transformations laissant invariant un flocon de neige (par exemple la symétrie par rapport à l'axe horizontal). En mathématiques, un groupe fini est un groupe constitué d'un nombre fini d'éléments. Soit G un groupe. On note en général sa loi multiplicativement et on désigne alors son élément neutre par 1. Toutefois, si G est abélien, la loi est souvent notée additivement et son élément neutre est alors désigné par 0 ; ce n'est cependant pas une règle générale : par exemple, le groupe multiplicatif d'un corps commutatif est noté multiplicativement, bien qu'il soit abélien.
Degree of an algebraic varietyIn mathematics, the degree of an affine or projective variety of dimension n is the number of intersection points of the variety with n hyperplanes in general position. For an algebraic set, the intersection points must be counted with their intersection multiplicity, because of the possibility of multiple components. For (irreducible) varieties, if one takes into account the multiplicities and, in the affine case, the points at infinity, the hypothesis of general position may be replaced by the much weaker condition that the intersection of the variety has the dimension zero (that is, consists of a finite number of points).
Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Rotation (physique)En cinématique, l'étude des corps en rotation est une branche fondamentale de la physique du solide et particulièrement de la dynamique, y compris de la dynamique des fluides, qui complète celle du mouvement de translation. L'analyse du mouvement de rotation se prolonge y compris aux échelles atomiques, avec la dynamique moléculaire et l'étude de la fonction d'onde en mécanique quantique.