Trois dimensionsTrois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
Universal setIn set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set. Many set theories do not allow for the existence of a universal set. There are several different arguments for its non-existence, based on different choices of axioms for set theory. In Zermelo–Fraenkel set theory, the axiom of regularity and axiom of pairing prevent any set from containing itself.
Image réciproque (géométrie différentielle)En mathématiques, la construction d'une image réciproque pour certains objets est une des opérations de base de la géométrie différentielle. Elle permet d'obtenir un nouvel objet, résultant du « transport » de l'objet initial par une certaine application. On considère ainsi les images réciproques des formes différentielles, des fibrés et de leurs sections et de façon générale tous les objets qui peuvent être composés à droite par l'application de transport.
Metric connectionIn mathematics, a metric connection is a connection in a vector bundle E equipped with a bundle metric; that is, a metric for which the inner product of any two vectors will remain the same when those vectors are parallel transported along any curve. This is equivalent to: A connection for which the covariant derivatives of the metric on E vanish. A principal connection on the bundle of orthonormal frames of E. A special case of a metric connection is a Riemannian connection; there is a unique such which is torsion free, the Levi-Civita connection.
Pushforward (differential)In differential geometry, pushforward is a linear approximation of smooth maps on tangent spaces. Suppose that is a smooth map between smooth manifolds; then the differential of at a point , denoted , is, in some sense, the best linear approximation of near . It can be viewed as a generalization of the total derivative of ordinary calculus. Explicitly, the differential is a linear map from the tangent space of at to the tangent space of at , . Hence it can be used to push tangent vectors on forward to tangent vectors on .
Space (mathematics)In mathematics, a space is a set (sometimes called a universe) with some added structure. While modern mathematics uses many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, Hilbert spaces, or probability spaces, it does not define the notion of "space" itself. A space consists of selected mathematical objects that are treated as points, and selected relationships between these points. The nature of the points can vary widely: for example, the points can be elements of a set, functions on another space, or subspaces of another space.
Forme de connexionEn géométrie différentielle, une 1-forme de connexion est une forme différentielle sur un -fibré principal qui vérifie certains axiomes. La donnée d'une forme de connexion permet de parler, entre autres, de courbure, de torsion, de dérivée covariante, de relevé horizontal, de transport parallèle, d'holonomie et de théorie de jauge. La notion de forme de connexion est intimement reliée à la notion de connexion d'Ehresmann. Soient : un groupe de Lie ; l'élément identité de ; l'algèbre de Lie de ; la représentation adjointe de sur ; une variété différentielle ; un -fibré principal sur .
Espace vectoriel quotientEn algèbre linéaire, l'espace vectoriel quotient E/F d'un espace vectoriel E par un sous-espace vectoriel F est la structure naturelle d'espace vectoriel sur l'ensemble quotient de E par la relation d'équivalence définie de la manière suivante : v est en relation avec w si et seulement si v – w appartient à F. C'est donc l'ensemble des classes [v] = v + F, où v parcourt E, muni des lois suivantes : somme vectorielle : [v] + [w] = [v + w] ; multiplication par un scalaire : λ [v] = [λ v].
Produit mixteEn géométrie, produit mixte est le nom que prend le déterminant dans un cadre euclidien orienté. Sa valeur absolue s'interprète comme le volume d'un parallélotope. Pour le produit mixte dans un espace euclidien orienté de dimension trois, voir l'article géométrie vectorielle. Soit E un espace euclidien orienté de dimension n. Soit B une base orthonormale directe de E. Le produit mixte de n vecteurs de E est défini par Il ne dépend pas de la base orthonormale directe B choisie.
Fenêtre (informatique)En informatique, une fenêtre est un élément d'un système de fenêtrage. C'est une zone rectangulaire de l'écran affectée à l'affichage de tout ou partie d'un logiciel. Les fenêtres sont parfois appelées feuilles, la notion de feuille étant plus représentative. En effet les fenêtres peuvent être placées les unes sur les autres, à la manière de feuilles de papier. L'intérieur de la fenêtre appartient au logiciel, tandis que la bordure et le bandeau supérieur appartient à l'environnement (gestionnaire de fenêtres).