Solide de PlatonEn géométrie euclidienne, un solide de Platon est l’un des cinq polyèdres à la fois réguliers et convexes. En référence au nombre de faces (4, 6, 8, 12 et 20) qui les composent, ils sont nommés couramment tétraèdre (régulier), hexaèdre (régulier) ou cube, octaèdre (régulier), dodécaèdre (régulier) et icosaèdre (régulier), les adjectifs « régulier » et « convexe » étant souvent implicites ou omis quand le contexte le permet. Depuis les mathématiques grecques, les solides de Platon furent un sujet d’étude des géomètres en raison de leur esthétique et de leurs symétries.
Del in cylindrical and spherical coordinatesThis is a list of some vector calculus formulae for working with common curvilinear coordinate systems. This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): The polar angle is denoted by : it is the angle between the z-axis and the radial vector connecting the origin to the point in question. The azimuthal angle is denoted by : it is the angle between the x-axis and the projection of the radial vector onto the xy-plane.
Théorème du point fixe de BrouwerEn mathématiques, et plus précisément en topologie algébrique, le théorème du point fixe de Brouwer fait partie de la grande famille des théorèmes de point fixe, qui énoncent que si une fonction continue f vérifie certaines propriétés, alors il existe un point x0 tel que f(x0) = x0. La forme la plus simple du théorème de Brouwer prend comme hypothèse que la fonction f est définie sur un intervalle fermé borné non vide I et à valeurs dans I. Sous une forme plus générale, la fonction est définie sur un convexe compact K d'un espace euclidien et à valeurs dans K.
Énergie potentielle électrostatiqueL'énergie potentielle électrostatique (ou simplement énergie électrostatique) d'une charge électrique q placée en un point P baignant dans un potentiel électrique est définie comme le travail à fournir pour transporter cette charge depuis l'infini jusqu'à la position P. Elle vaut donc : si l'on se place dans le cas où les sources générant le potentiel électrique V sont distribuées dans une région bornée de l'espace, ce qui permet d'attribuer une valeur nulle du potentiel à l'infini.
Stockage de l'énergieLe stockage de l'énergie consiste à mettre en réserve une quantité d'énergie provenant d'une source pour une utilisation ultérieure. Il a toujours été utile et pratiqué, pour se prémunir d'une rupture d'un approvisionnement extérieur ou pour stabiliser à l'échelle quotidienne les réseaux électriques, mais il a pris une acuité supplémentaire depuis l'apparition de l'objectif de transition écologique.
QuasiperiodicityQuasiperiodicity is the property of a system that displays irregular periodicity. Periodic behavior is defined as recurring at regular intervals, such as "every 24 hours". Quasiperiodic behavior is a pattern of recurrence with a component of unpredictability that does not lend itself to precise measurement. It is different from the mathematical concept of an almost periodic function, which has increasing regularity over multiple periods. Climate oscillations that appear to follow a regular pattern but which do not have a fixed period are called quasiperiodic.
Point fixeEn mathématiques, pour une application f d'un ensemble E dans lui-même, un élément x de E est un point fixe de f si f(x) = x. Exemples : dans le plan, la symétrie par rapport à un point A admet un unique point fixe : A ; l'application inverse (définie sur l'ensemble des réels non nuls) admet deux points fixes : –1 et 1, solutions de l'équation équivalente à l'équation . Graphiquement, les points fixes d'une fonction f (d'une variable réelle, à valeurs réelles) sont les points d'intersection de la droite d'équation y = x avec la courbe d'équation y = f(x).
Coordonnées polairesvignette|upright=1.4|En coordonnées polaires, la position du point M est définie par la distance r et l'angle θ. vignette|upright=1.4|Un cercle découpé en angles mesurés en degrés. Les coordonnées polaires sont, en mathématiques, un système de coordonnées curvilignes à deux dimensions, dans lequel chaque point du plan est entièrement déterminé par un angle et une distance. Ce système est particulièrement utile dans les situations où la relation entre deux points est plus facile à exprimer en termes d’angle et de distance, comme dans le cas du pendule.
Différence entre masse et poidsdroite|vignette|300x300px| La masse et le poids d'un même objet sur Terre et sur Mars. Le poids varie en raison de l'intensité différente de l'accélération gravitationnelle alors que la masse est la même. Dans l'usage courant, on parle souvent de poids pour désigner la masse d'un objet, bien qu'il s'agisse en fait de concepts et de quantités différents. Néanmoins, lorsque deux objets sont soumis à la même gravité (c'est-à-dire à la même intensité de champ gravitationnel), l'objet ayant plus de masse pèse toujours plus que l'autre.
Vitesse angulaireEn mécanique, la ou est une grandeur physique qui représente le taux de variation d'un angle par rapport au temps. C'est l'analogue de la vitesse de translation pour un mouvement de rotation. La vitesse angulaire est définie comme la dérivée par rapport au temps de la position angulaire de l'objet en rotation : Si on dérive une nouvelle fois la vitesse angulaire, on obtient l'accélération angulaire.