Scala (langage)Scala est un langage de programmation multi-paradigme conçu à l'École polytechnique fédérale de Lausanne (EPFL) pour exprimer les modèles de programmation courants dans une forme concise et élégante. Son nom vient de l'anglais Scalable language qui signifie à peu près « langage adaptable » ou « langage qui peut être mis à l'échelle ». Il peut en effet être vu comme un métalangage. Scala intègre les paradigmes de programmation orientée objet et de programmation fonctionnelle, avec un typage statique.
Induction (logique)L'induction est historiquement le nom utilisé pour signifier un genre de raisonnement qui se propose de chercher des lois générales à partir de l'observation de faits particuliers, sur une base probabiliste. Remarque : Bien qu'associée dans le titre de cet article à la logique, la présentation qui suit correspond surtout à la notion bayésienne, utilisée consciemment ou non, de l'induction.
NombreUn nombre est un concept permettant d’évaluer et de comparer des quantités ou des rapports de grandeurs, mais aussi d’ordonner des éléments en indiquant leur rang. Souvent écrits à l’aide d’un ou plusieurs chiffres, les nombres interagissent par le biais d’opérations qui sont résumées par des règles de calcul. Les propriétés de ces relations entre les nombres sont l’objet d’étude de l’arithmétique, qui se prolonge avec la théorie des nombres.
Traitement automatique du langage naturelLe traitement automatique du langage naturel (TALN), en anglais natural language processing ou NLP, est un domaine multidisciplinaire impliquant la linguistique, l'informatique et l'intelligence artificielle, qui vise à créer des outils de traitement du langage naturel pour diverses applications. Il ne doit pas être confondu avec la linguistique informatique, qui vise à comprendre les langues au moyen d'outils informatiques.
Algorithme récursifUn algorithme récursif est un algorithme qui résout un problème en calculant des solutions d'instances plus petites du même problème. L'approche récursive est un des concepts de base en informatique. Les premiers langages de programmation qui ont autorisé l'emploi de la récursivité sont LISP et Algol 60. Depuis, tous les langages de programmation généraux réalisent une implémentation de la récursivité. Pour répéter des opérations, typiquement, un algorithme récursif s'appelle lui-même.
Lambda-calculLe lambda-calcul (ou λ-calcul) est un système formel inventé par Alonzo Church dans les années 1930, qui fonde les concepts de fonction et d'application. On y manipule des expressions appelées λ-expressions, où la lettre grecque λ est utilisée pour lier une variable. Par exemple, si M est une λ-expression, λx.M est aussi une λ-expression et représente la fonction qui à x associe M. Le λ-calcul a été le premier formalisme pour définir et caractériser les fonctions récursives : il a donc une grande importance dans la théorie de la calculabilité, à l'égal des machines de Turing et du modèle de Herbrand-Gödel.
Synthèse de programmesEn informatique, la synthèse de programmes consiste à construire automatiquement un programme à partir d'une spécification. La spécification est décrite dans un langage logique, par exemple en logique temporelle linéaire. La synthèse de programmes s'appuie sur des techniques de vérification formelle de programmes. Le problème de synthèse de programmes remonte aux travaux d'Alonzo Church. Manna et Waldinger ont proposé une méthode déductive pour synthétiser un programme à partir d'une spécification en logique du premier ordre.
Raisonnement automatisévignette|Visualisation commune du réseau de neurones artificiels avec puce NOTOC Le raisonnement automatisé est un domaine de l'informatique consacré à la compréhension des différents aspects du raisonnement de manière à permettre la création de logiciels qui permettraient aux ordinateurs de « raisonner » de manière automatique, ou presque. Il est considéré habituellement comme un sous-domaine de l'intelligence artificielle, mais possède aussi de fortes connexions avec l'Informatique théorique et même avec la philosophie.
Calcul des propositionsLe calcul des propositions ou calcul propositionnel, (ou encore logique des propositions) fait partie de la logique mathématique. Il a pour objet l'étude des relations logiques entre « propositions » et définit les lois formelles selon lesquelles les propositions complexes sont formées en assemblant des propositions simples au moyen des connecteurs logiques et celles-ci sont enchaînées pour produire des raisonnements valides. Il est un des systèmes formels, piliers de la logique mathématique dont il aide à la formulation des concepts.
Formule propositionnelleEn logique mathématique une proposition, ou formule propositionnelle, ou expression propositionnelle est une expression construite à partir de connecteurs et de variables propositionnelles. En logique propositionnelle classique, une formule propositionnelle, ou expression propositionnelle, est une formule bien formée qui possède une valeur de vérité. Si les valeurs de toutes les variables propositionnelles dans une formule propositionnelle sont données, une unique valeur de vérité peut être déterminée.